
MATLAB® Compiler SDK™

MATLAB® Production Server™ Testing Guide

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler SDK™ MATLAB® Production Server™ Testing Guide
© COPYRIGHT 2012–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2015 Online only New for Version 6.0 (Release R2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online only Revised for Version 6.3 (Release R2016b)
March 2017 Online only Revised for Version 6.3.1 (Release R2017a)
September 2017 Online only Revised for Version 6.4 (Release R2017b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

MATLAB Production Server Integration Testing
1

Write a Test Client . 1-2

Test Client Data Integration Against MATLAB 1-3

Functions — Alphabetical List
2

Apps — Alphabetical List
3

iii

Contents

MATLAB Production Server Integration
Testing

• “Write a Test Client” on page 1-2
• “Test Client Data Integration Against MATLAB” on page 1-3

1

Write a Test Client
Integration testing with the MATLAB embedded server instance requires a client that
calls the compiled MATLAB functions. The client can be coded using any of the MATLAB
Production Server client APIs.

At a minimum, the client must:

1 Instantiate the client runtime.
2 Connect to the embedded server instance using the port specified in the Production

Server Compiler app.
3 Call the functions being tested with appropriate data.

For information on writing client code, see:

• “Java Client Programming”
• “.NET Client Programming”
• “C Client Programming”
• “Python Client Programming”

1 MATLAB Production Server Integration Testing

1-2

Test Client Data Integration Against MATLAB
This example shows how to test the integration between a Java® client and the
addmatrix MATLAB function. Using the Production Server Compiler app, you start a
testing session and inspect the values passed between the client and the MATLAB
function. You also set breakpoints in the MATLAB function and inspect the data using
the MATLAB debugger.

1 In MATLAB, enter the function to deploy on MATLAB Production Server.
function a = addmatrix(a1, a2)

a = a1 + a2;
2 In a text editor, paste the following Java client code.

import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;

interface MATLABAddMatrix
 {
 double[][] addmatrix(double[][] a1, double[][] a2)
 throws MATLABException, IOException;
 }

public class MPSClientExample {

 public static void main(String[] args){

 double[][] a1={{1,2,3},{3,2,1}};
 double[][] a2={{4,5,6},{6,5,4}};

 MWClient client = new MWHttpClient();

 try{
 MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),
 MATLABAddMatrix.class);
 double[][] result = m.addmatrix(a1,a2);

 // Print the magic square

 printResult(result);

 }catch(MATLABException ex){

 // This exception represents errors in MATLAB
 System.out.println(ex);
 }catch(IOException ex){

 // This exception represents network issues.
 System.out.println(ex);
 }finally{

 client.close();

 Test Client Data Integration Against MATLAB

1-3

 }
 }

 private static void printResult(double[][] result){
 for(double[] row : result){
 for(double element : row){
 System.out.print(element + " ");
 }
 System.out.println();
 }
 }
}

3 Save the file as MPSClientExample.java.
4 At the system command prompt, compile the Java client using the javac command.

javac -classpath "matlabroot\toolbox\compiler_sdk\mps_clients\java\mps_client.jar" MPSClientExample.java
5 In MATLAB, open the Production Server Compiler app.

a On the toolstrip, select the Apps tab.
b Click the arrow on the far right of the tab to open the apps gallery.
c Click Production Server Compiler.

1 MATLAB Production Server Integration Testing

1-4

6 In the Type section of the toolstrip, select Deployable Archive from the list.
7 Specify the MATLAB functions to deploy.

a In the Exported Functions section of the toolstrip, click the plus button.
b Using the file explorer, locate and select the addmatrix.m file.

addmatrix.m is located in matlabroot\extern\examples\compiler.
c Click Open to select the file and close the file explorer.

addmatrix.m is added to the field.
8 Click Test Client.

9 Check the value of the Port field.

It must be:

• an available port
• the same port number the client is using

 Test Client Data Integration Against MATLAB

1-5

For this example, the client expects use the port 9910. If the port is not available,
you will need to update the client and recompile it.

10 Click Start.
11 At the system command prompt, run the Java client.

java -classpath .;"matlabroot\toolbox\compiler_sdk\mps_clients\java\mps_client.jar" MPSClientExample

Note You cannot run the Java client from the MATLAB command prompt.

The application returns the following at the console:

5.0 7.0 9.0
9.0 7.0 5.0

The Server Requests section of the app shows that the request completed
successfully.

12 Click the completed message in the app to see the values exchanged between the
client and MATLAB.

13 Click Input to view the arrays passed into MATLAB.
14 Click Output to view the array returned to the client.
15 Click Breakpoints > Break on MATLAB function entry.
16 At the system command prompt, run the Java client.

1 MATLAB Production Server Integration Testing

1-6

java -classpath .;"matlabroot\toolbox\compiler_sdk\mps_client\java\mps_client.jar" MPSClientExample

Note You cannot run the Java client from the MATLAB command prompt.
17 When the MATLAB editor opens, note that a breakpoint is set at the first line in the

function and that processing has paused at the breakpoint.

You now can use all of the MATLAB debugging tools to step through your function.

Note You can create a timeout error in the client if you take a long time stepping
through the MATLAB function.

18 Switch to the main MATLAB window.
19 Note that variables a1 and a2 are displayed in the MATLAB workspace.
20 In the MATLAB editor, click Continue.

The application returns the following at the console:

5.0 7.0 9.0
9.0 7.0 5.0

The Server Requests section of the app shows that the request completed
successfully.

21 Click Stop to shutdown the test server.
22 Click Close Test.

See Also

Related Examples
• “Write a Test Client” on page 1-2
• “Compile Deployable Archives with Production Server Compiler App”

 See Also

1-7

Functions — Alphabetical List

2

productionServerCompiler
Test, build and package functions for use with MATLAB Production Server

Syntax
productionServerCompiler
productionServerCompiler project_name
productionServerCompiler -build project_name
productionServerCompiler -package project_name

Description
productionServerCompiler opens the Production Server Compiler app for the
creation of a new compiler project.

productionServerCompiler project_name opens the appropriate compiler app with
the project preloaded.

productionServerCompiler -build project_name runs the appropriate compiler
app to build the specified project. The installer is not generated.

productionServerCompiler -package project_name runs the appropriate
compiler app to build and package the specified project. The installer is generated.

Examples

Create a New Production Server Project

Open the Production Server Compiler app to create a new project.

productionServerCompiler

2 Functions — Alphabetical List

2-2

Package a Deployable Archive using an Existing Project

Open the appropriate compiler app to package an existing project file.

productionServerCompiler -package my_magic

Input Arguments
project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved project. The project must be on the current path.

Introduced in R2014a

 productionServerCompiler

2-3

Apps — Alphabetical List

3

Production Server Compiler
Package MATLAB programs for deployment to MATLAB Production Server

Description
The Production Server Compiler app tests the integration of client code with
MATLAB functions. It also packages MATLAB functions into archives for deployment to
MATLAB Production Server.

Open the Production Server Compiler App
• MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the

app icon.
• MATLAB command prompt: Enter productionServerCompiler.

Examples
• “Create a Deployable Archive for MATLAB Production Server”
• “Build Excel Add-In and Deployable Archive”

Parameters
type — type of archive generated
Deployable Archive | Deployable Archive with Excel Integration

Type of archive to generate as a character array.

exported functions — functions to package
list of character arrays

Functions to package as a list of character arrays.

3 Apps — Alphabetical List

3-2

archive information — name of the archive
character array

Name of the archive as a character array.

files required for your archive to run — files that must be included with
archive
list of files

Files that must be included with archive as a list of files.

files packaged with the archive — optional files installed with archive
list of files

Optional files installed with archive as a list of files.

Settings

Additional parameters passed to MCC — flags controlling the behavior of the
compiler
character array

Flags controlling the behavior of the compiler as a character array.

testing files — folder where files for testing are stored
character array

Folder where files for testing are stored as a character array.

end user files — folder where files for building a custom installer are stored
character array

Folder where files for building a custom installer are stored are stored as a character
array.

packaged installers — folder where generated installers are stored
character array

Folder where generated installers are stored as a character array.

 Production Server Compiler

3-3

Programmatic Use
productionServerCompiler

See Also

Topics
“Create a Deployable Archive for MATLAB Production Server”
“Build Excel Add-In and Deployable Archive”

Introduced in R2013b

3 Apps — Alphabetical List

3-4

